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When deep-water surface gravity waves traverse an area with a curved or otherwise
variable current, the current can act analogously to an optical lens, to focus wave
action into a caustic region. In this region, waves of surprisingly large size, alternatively
called freak, rogue, or giant waves are produced. We show how this mechanism
produces freak waves at random locations when ocean swell traverses an area of
random current. When the current has a constant (possibly zero) mean with small
random fluctuations, we show that the probability distribution for the formation of a
freak wave is universal, that is, it does not depend on the statistics of the current, but
only on a single distance scale parameter, provided that this parameter is finite and
non-zero. Our numerical simulations show excellent agreement with the theory, even
for current standard deviation as large as 1.0 m s−". Since many of these results are
derived for arbitrary dispersion relations with certain general properties, they include
as a special case previously published work on caustics in geometrical optics.

1. Introduction

Waves of surprisingly large size, alternatively called freak, rogue, or giant waves, are
a well-documented hazard to mariners. Perhaps the most celebrated incident occurred
during the world’s first solo circumnavigation, when, in 1896, well off the Patagonian
coast, the Spray’s hull was completely submerged by a giant wave as Captain Joshua
Slocum (1899) clung to the peak halyards. Captain Mallory (1974) analysed eleven
more-recent incidents, off the south-east coast of South Africa, of freak waves which
caused damage to large vessels, including one ship which was cleaved in half. All these
occurrences were in an area renowned for producing freak waves when a large ocean
swell opposes the swift Agulhas current.

Peregrine (1976) suggested that, in areas of strong current such as the Agulhas,
abnormally large waves could be produced when wave action is concentrated by
refraction into a caustic region. In this scenario, a curved or otherwise variable current
acts analogously to an optical lens to focus wave action. Gerber (1996) applied this
idea, and the theory of Gerber (1993), to explain the large waves encountered in the
Agulhas current, examining in particular the 1986 incident involving the semi-
submersible Actinia. A related theory was given by Gutshabash & Lavrenov (1986).
Irvine & Tilley (1988) analysed Synthetic Aperture Radar (SAR) data of the Agulhas
current, and concluded that caustics caused by meanders in the Agulhas could produce
giant waves.

Further support for the caustic theory of giant waves is given by Smith (1976), who
calculated the shape of a wave near a caustic, and produced an asymmetry, as is
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reported by mariners. Mallory (1974) describes freak waves as having a steeper forward
face preceded by a deep trough, or ‘hole in the sea’.

We adopt here the nomenclature of Bacon (1991, in the classic text of Coles), to
distinguish between extreme waves, representing the tail of some typical statistical
distribution of wave heights (generally a Rayleigh distribution), and freaks, ‘defined as
waves of a height occurring more often than would be expected from the ‘‘background’’
probability distribution’. Note however that not all authorities accept this distinction,
e.g. Van Dorn (1993). Although Sand et al. (1990), in their analysis of waves on the
Danish Continental Shelf, do not use this nomenclature, they do confirm the existence
of large waves that Bacon would call freak, rather than extreme. These waves, in their
words, ‘do not belong to the traditional short term statistical distributions used for
ocean waves. The waves are too high, too asymmetric and too steep.’

The expected structure of extreme waves was calculated theoretically by Phillips, Gu
& Donelan (1993a), who obtained good agreement with data, as did Phillips, Gu &
Walsh (1993b). In contrast to Smith’s (1976) analysis of giant waves, this expected
structure of extreme waves is symmetric. A more definitive mathematical theory
applicable to determining the structure of extreme waves is given by Lindgren (1970).

In this paper, we compute the probability distribution for the formation of a freak
wave when a regular ocean swell traverses a region of deep water with random current
fluctuations. It is assumed that freak waves are produced by caustics resulting from ray
focusing when the swell interacts with the random current. Under wide hypotheses,
when the mean current is constant (possibly zero) and the random current fluctuations
are small, the probability distribution for the formation of a freak is universal, i.e. it
does not depend on the details of the current distribution, but is described by a
universal mathematical form controlled by a single distance scale parameter, provided
that this parameter is finite and non-zero. The theory is verified with Monte Carlo
simulations, and good agreement is obtained, even when the standard deviation of the
current is as large as 1 m s−". Since many of the main results are derived for arbitrary
ray systems generated by two-dimensional dispersion relations, they include, for
example, previously published results on caustics in geometrical optics.

Note that in this model caustics occupy a fixed position in space near which freak
waves are generated. Conditions like this were encountered by the ketch Tzu Hang
when she was pitchpoled in the South Pacific, 900 miles offshore, in the first of her two
unsuccessful attempts to round Cape Horn (Smeeton 1959). Henderson (1991)
postulated the existence of uncharted seamounts to explain crew member John
Guzzwell’s description of the sea state as similar to ‘what would be encountered with
a long swell passing over a shoal area’. A caustic region is an alternative explanation.
Peregrine (1976) suggested that a better description of wave behaviour in a caustic
region might be given by considering the behaviour of a short wave group, that, he
surmised, might ‘show just one or two large waves persisting for a limited time’.

To study the focusing of waves, we introduce, in §2, the ray theory for water waves
(Longuet-Higgins & Stewart 1961; Whitham 1974; Peregrine 1976), in which wave rays
are refracted by a spatially varying current. In this theory, a singularity in the ray field
develops when two rays, which are initially (infinitesimally) close, coalesce. A caustic
is the locus of such points, where rays are pinched together, and large amplitudes
occur. In numerical simulations, the location of a caustic may be detected by
monitoring the ‘Jacobian’, or equivalently the ‘raytube area’, which is the distance
between two initially close rays, normalized by their initial separation. A caustic is then
determined as the locus of points in space where the raytube area vanishes.

In §2 we also derive new equations for the propagation of raytube area (or,
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equivalently, the Jacobian) along a ray. This is a new development in the ray theory
for water waves, with many possible applications beyond that of determining the
location of caustics, for which these equations are utilized here. In the assessment of
Irvine & Tilley (1988), the Jacobian ‘ is the most important factor governing energy
density in situations dominated by refraction’. Furthermore, we derive these equations
in great generality, for arbitrary dispersion relations in two dimensions, so that they are
also applicable to a wide range of wave propagation problems other than those of
surface gravity waves in deep water. In this way, our equations can be seen as a
generalization of the raytube area equations that are known for non-dispersive waves
(see, e.g. Kulkarny & White 1982).

The principle of conservation of wave action (CWA) (Longuet-Higgins & Stewart
1961; Whitham 1974; Peregrine 1976) may be used, in conjunction with ray theory, to
determine wave amplitudes at points in space that are not near a caustic. For
completeness, and to demonstrate the amplitude singularity at a caustic, we use CWA
in §2 to express the wave amplitude in terms of the raytube area. However, all other
results in this paper, including the raytube area equations and the universal rogue
probability curve, are independent of the assumption of CWA. This point is important
because CWA has, in general, only been demonstrated mathematically for irrotational
currents and we intend to apply our results for example to random eddy fields with
various statistics. Since our calculations are only concerned with the location of
caustics, and not their amplitude, our only assumption is that an amplitude singularity
results from the geometric one. That is, we assume, as the other authors cited above,
that freak waves are associated with caustics. A further discussion of wave amplitudes
and related matters is contained in the Appendix.

In §3 we consider the propagation of a ray and its associated raytube area through
a region of random current. It is assumed that the current has a constant (possibly
zero) mean and that the random fluctuations have a standard deviation σ which is
much smaller than the phase velocity, c

p
, of the waves. The random fluctuations are

assumed to have an intrinsic length scale lh , and to satisfy a ‘mixing property’, roughly,
that correlations between any two points decay rapidly to zero when the two points are
separated by large distances in space. The equations are scaled for the proper distance
scale to see caustics developing, a propagation distance of O((σ}c

p
)−#/$lh ).

Application of the general limit theorem of Papanicolaou & Kohler (1974) next
yields an approximation in terms of a diffusion Markov process of a particularly simple
form. Actually, we demonstrate this limit not for surface gravity waves only but, again,
for an arbitrary ray system generated by any two-dimensional dispersion relation with
certain general properties. Because of this, our results contain as a special case
previously published work on geometrical optics, or acoustics (Kulkarny & White
1982; White, Nair & Bayliss 1988; Klyatskin 1993). In addition, this previous work can
be used to deduce further properties of the limit process. It is this substantial generality
of the limit, which does not depend on the details of the random fluctuations, or, for
that matter, on the precise form of the dispersion relation, that provides universality.

In §4 we examine the universal limit, and derive more explicit formulas for the
relevant parameters. In particular, we study a model for two-dimensional in-
compressible flow with a random stream function, which is the model used in the
Monte Carlo simulations of §5.

Several effects are not included in our mathematical model. (i) Swell is represented
as a regular time-harmonic wave train, so that a more realistic wave variability is
neglected. (ii) As discussed above, we do not attempt to predict the actual wave heights,
but only the caustic locations. Thus nonlinear effects are neglected as are the effects of
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wave breaking and other dissipation mechanisms. (iii) We do not consider nonlinear
instabilities, or the possible defocusing effects of nonlinearities. (iv) We do not consider
the generation of waves by wind forces, a subject with an extensive literature (Komen
et al. 1994). We consider only the focusing of wave action, using linear monochromatic
theory, after the swell has been generated. Some of these other topics are discussed
further in the Appendix.

This manuscript, submitted in the centennial year of Slocum’s Great Wave, is our
contribution to the Joshua Slocum Centennial festivities of 1995–8, commemorating
his historic voyage. Whether a current-induced caustic caused the Great Wave is, of
course, uncertain. However, it is plausible, since Slocum was near an area of what
might be considered random current, the notorious tide-races. He had gone well
offshore because ‘Hoping that she might go clear of the destructive tide-races, the
dread of big craft or little along this coast, I gave all the capes a berth of about fifty
miles, for these dangers extend many miles from the land. But where the sloop avoided
one danger she encountered another ’, that is, the rogue wave (Slocum 1899). So it is
possible that the danger Slocum encountered was another manifestation of the one he
had sought to avoid.

2. Propagation equations for raytube area

The dispersion relation for surface gravity waves in the presence of a constant
current U `2# is (Peregrine 1976)

Ω¯Ω{ (rkr)k[U, (2.1)

where Ω{ (rkr)¯³(grkr)"/# (2.2)

is the dispersion relation with no current, and g is the acceleration due to gravity. For
U¯U(x) a slowly varying function of x `2#, an approximate theory (Whitham 1974;
Peregrine 1976) provides a generalization for the phase, φ, of a wave, which in the case
of a constant current is of the form φ¯k[x®ωt, with ω¯Ω(k). A local phase,
φ(t,x), is constructed from the local frequency ω¯®φ

t
and the local wavenumber

k¯¡φ3φx, by using the dispersion relation locally, so that

φ
t
Ω(x,φx)¯ 0. (2.3)

The amplitude, a, of the wave is determined by conservation of wave action

¥
¥t 0

a#

Ω{ 1¡[0a#

Ω{ Ωk1¯ 0. (2.4)

Consider the steady problem of ocean swells of constant frequency ω incident on a
region of random current. Putting φ(t,x)¯®ωtφW (x), and dropping hats, (2.3) and
(2.4) become

Ω(x,φx)¯ω, (2.5)

¡[0a#

Ω{ Ωk1¯ 0. (2.6)

Let φ¯φ
!
(x) be given along some initial curve x

!
(α) parametrized by arclength α.

In particular, an initially plane wavefront is analysed below, so that φ
!

is constant
along a straight line x

!
(α). Then (2.5) can be solved by the method of characteristics

(Courant & Hilbert 1962). The rays are the characteristic curves xa (t,α),ka (t,α) `2#,
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where α denotes the starting point of the ray on x
!
(α), and the parameter along the ray,

which has the dimension of time, is denoted by t. The rays satisfy the characteristic
equations

¥xa (t,α)

¥t
¯Ωk(xa ,ka ),

¥ka (t,α)

¥t
¯®Ωx(xa ,ka ), (2.7)

with the initial condition

xa (0,α)¯x
!
(α), ka (0,α)¯φ

!,
x(x

!
(α)). (2.8)

Then it can be shown that
ka (t,α)¯φx(xa (t,α)) (2.9)

and φ(xa (t,α))¯φa (t,α), where φa satisfies

¥φa (t,α)

¥t
¯k[Ωk, φa (0,α)¯φ

!
(x

!
(α)). (2.10)

Auxiliary equations, which are convenient for determining the amplitude, a, will
now be derived. The unit tangent along a ray is

e
"
(t,α)¯

Ωk(xa ,ka )
rΩk(xa ,ka )r

. (2.11)

Let e
#
v e

"
be the unit normal, so that (e

"
, e

#
) are right-handed. Then

¥e
"

¥t
¯ rΩkr κe

#
,

¥e
#

¥t
¯®rΩkr κe

"
, (2.12)

where κ¯
1

rΩkr
0eT# [Ωkx[e

"
®eT

#
[Ωkk[

Ωx

rΩkr
1 (2.13)

is the ray curvature. Here Ωkx is the 2¬2 matrix with ijth entry ¥#Ω}(¥k
i
¥x

j
), and a

similar notation is used for Ωkk, Ωxx and Ωxk ¯ΩT
kx.

Let
γ¯ (t,α)T (2.14)

so that xa γ is the 2¬2 matrix of derivatives of the transformation from ray coordinates
to physical space. From (2.7), (2.11) the Jacobian, J, of the transformation can be
obtained:

J¯det (xa γ)¯ rΩkrA, (2.15)

where A¯ eT
#
[xa α (2.16)

is the raytube area. That is, A(t,α) dα is the distance of the point xa (t,α) from the
infinitesimally close ray x([,αdα). Propagation equations for xa γ,ka γ along a ray are
obtained by differentiation of (2.7) :

¥
¥t

xa γ ¯Ωkx[xa γΩkk[ka γ,
¥
¥t

ka γ ¯®Ωxx[xa γ®Ωxk[ka γ. (2.17)

From (2.17) a propagation equation can be obtained for J in terms of

kx(xa (t,α))¯φxx(xa (t,α))¯ka γ(t,α))xa −"γ (t,α). (2.18)

Thus
1

J

¥
¥t

J¯Trace ²ΩkxΩkk kx). (2.19)
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From (2.6), (2.7)

¥
¥t 0

a#(xa (t,α))

Ω{ (φx(xa (t,α)))1¯®0α#

Ω{ 1 0¡x[Ωk))
x=xa

¯®0a#

Ω{ 1Trace ²ΩkxΩkk kx´. (2.20)

From (2.19), (2.20), (2.15) the amplitude is written in terms of the raytube area:

a(t,α)¯ a!0Ω{

Ω{ !
rΩ!

kr
rΩkr

A!

A 1
"/#

, (2.21)

where superscript 0 denotes values at t¯ 0.
Propagation equations for A along a ray can now be derived. From (2.17), (2.18) a

matrix Riccati equation is obtained for kx :

¥
¥t

kx(xa (t,α))¯®Ωxx®Ωxk kx®kx Ωkx®kx Ωkk kx. (2.22)

Let Q be the 2¬2 matrix with e
j
, j¯ 1, 2 as its jth column. Changing to the e

"
, e

#
basis,

and using symmetry of kx gives

kW x ¯QTkx Q¯

A

B

®eT
"
[

Ωx

rΩkr
®eT

#
[

Ωx

rΩkr

®eT
#
[

Ωx

rΩkr
R

C

D

(2.23)

where R¯ eT
#
[kx[e

#
¯

B

A
(2.24)

and B¯ eT
#
[

Ωx

rΩkr
[eT

"
xa αeT

#
[ka α. (2.25)

Change of basis in (2.22) and use of (2.12) and (2.23) yields a scalar Riccati equation
for R :

¥R
¥t

¯µ
"
®2µ

#
R®µ

$
R#, (2.26)

where

µ
"
¯®eT

#
[Ωxx[e

#
2

eT
#

Ωx

rΩkr
[eT

"
[Ωkx[e

#
eT

#
[Ωkx[e

"
]

®20eT" [Ωx

rΩkr
1 0eT# [Ωx

rΩkr
1 eT

"
[Ωkk[e

#
®0eT# [Ωx

rΩkr
1# [eT

"
Ωkk[e

"
2eT

#
[Ωkk[e

#
],

µ
#
¯®eT

"
[Ωkk[e

#0e
T

#
[Ωx

rΩkr
1eT

#
[Ωkx[e

#
µ
$
¯ eT

#
Ωkk e

#
.

5

6

7

8

(2.27)

By differentiating (2.5) with respect to α an expression for eT
"
[ka α is obtained, which,

when combined with (2.25), gives

ka α ¯®A
eT
#
[Ωx

rΩkr
e
"
Be

#
®eT

"
[xa α

Ωx

rΩkr
. (2.28)

Differentiation of (2.16), and use of (2.28) yields

¥A
¥t

¯µ
#
Aµ

$
B. (2.29)
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Differentiating B¯RA and use of (2.26) and (2.29) yields

¥B
¥t

¯µ
"
A®µ

#
B. (2.30)

To summarize, the ray position xa and local wavenumber ka are determined by the ray
equations (2.7), which are four nonlinear scalar equations. The raytube area A and
auxiliary variable B can then be computed along a ray from the two additional scalar
linear equations (2.29) and (2.30), with coefficients (2.27). The amplitude a is then
determined from (2.21). The derivatives of Ω used in (2.7) and (2.27) are

(Ωk)i
¯³

g"/#

2rkr$/#
k
i
U

i
, (Ωx)i

¯ 3
#

j="

k
j

¥U
j

¥x
i

, (Ωxx)ij
¯ 3

#

l="

k
l

¥#U
l

¥x
i
¥x

j

,

(Ωkx)ij
¯ (Ωxk)ji

¯
¥U

i

¥x
j

, (Ωkk)ij
¯³0 g"/#

2rkr$/#
δ
ij
®

3g"/#

4rkr(/#
k
i
k
j1 .

5

6

7

8

(2.31)

3. A stochastic limit

To determine the distance scale over which caustics may occur, the dispersion
relation (2.5) is first non-dimensionalized. Let lh be a typical length and kh a typical
(scalar) wavenumber. For the validity of ray theory kh lh must be large. Non-dimensional
position, wavenumber and phase are defined by

x«¯
x

lh
, k«¯

k

kh
, φ«¯

φ

kh lh
. (3.1)

Note that if k¯φx, then k«¯φ!x«. Define the non-dimensional dispersion relation by

Ω«(x«,k«)¯Ω(lhx«,kh k«)}ω. (3.2)

Then the dispersion (2.5) holds for the primed variables, with ω«¯ 1.
More specifically, consider (2.1), (2.2), where U¯U(x}lh ) is a random function of

position, and lh is an intrinsic length scale. For given ω, let

kh ¯ω#}g, c!
p
¯ω}kh (3.3)

be the wavenumber and phase velocity, respectively, in the absence of current, and let

U «¯U}c!
p
. (3.4)

Then (2.1), (2.2) hold for the primed variables, with g«¯ 1. For notational convenience,
primes will be dropped in what follows.

Consider propagation across a region of current with small random fluctuations

U(x)¯U
!
σUq (x), (3.5)

where U
!

is a constant, non-random mean current, and σUq (x) is a mean zero
homogeneous random field with standard deviation σ, which is assumed small. We will
follow a ray, with its associated raytube area, to determine the probability of a caustic
developing (i.e. A¯ 0) within a give propagation distance.

The main tool used below is the probabilistic limit theorem of Papanicolaou &
Kohler (1974). This theorem applies to random ordinary differential equations of the
form

dW

dτ
¯

1

ε
H

"0 τε# ,W1H
#0 τε# ,W1 ,

W(0)¯W
!
,

5

6

7

8

(3.6)
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where W `2d, ε is a small parameter, and for each fixed, non-random value W� of W,
H

"
(t,W� ) and H

#
(t,W� ) are random functions of t satisfying a ‘mixing condition’.

Roughly, this means that (H
"
(t,W� ), H

#
(t,W� )) become asymptotically independent of

(H
"
(tt«,W� ), H

#
(tt«,W� )) as the time difference t« becomes large. Furthermore, for

a sensible limit of (3.6), H
"
(t,W� ) must have mean zero. Then as ε $ 0, the solution W

of (3.6) converges (weakly) to a diffusion Markov process, with infinitesimal generator
(Kolmogorov backward operator)

L¯ 3
d

i,j="

aij(W )
¥#

¥W i ¥W j
3

d

i="

bi(W )
¥

¥W i
. (3.7)

Formulas for aij, bi are as follows:

aij(W� )¯ lim
TU¢

1

T&
t+T

t

& s"

t

©H i

"
(s

"
,W� )Hj

"
(s

#
,W� )ªds

#
ds

"
,

bi(W� )¯ lim
TU¢

1

T&
t+T

t

©Hi

#
(s

"
,W� )ªds

"

 lim
TU¢

1

T&
t+T

t

& s"

t

-H j

"
(s

"
,W� )

¥H i

"
(s

#
,W� )

¥W� j .ds
#
ds

"
,

5

6

7

8

(3.8)

where ©[ª denotes probability average.
The operator L determines the statistics of the limiting Markov process through, for

example, partial differential equations for its probability density. In particular, let Σ be
the square root of the symmetric part of the matrix a whose components are given in
(3.8), i.e. Σ satisfies

ΣΣT¯ "

#
(aaT). (3.9)

Let b be the vector with components given in (3.9), and let β be a vector of independent
Brownian motions. Then the limit for W can be characterized as the solution of the Ito
stochastic differential equations (white noise equations)

dW¯b(W ) dto2Σ(W ) dβ. (3.10)

To apply these general formulas to the case of water waves, let

ε¯σ"/$, F(k)¯ (grkr)"/#k[U
!
, G(x,k)¯k[Uq (x), (3.11)

so that Ω(x,k)¯F(k)ε$G(x,k), (3.12)

where G(x,k) is, for fixed k, a homogeneous random field, i.e., its statistics are
translation invariant. The limit theorem will be applied to general dispersion relations
of the form (3.12). Thus the results will be applicable not only to water waves, but, for
example, to geometrical optics in a random medium, where F(k)¯ rkr, G(x,k)¯
rkrcW (x), σcW (x) is the mean zero random perturbation in the local propagation speed
(which has mean one), σ is the standard deviation, and ε¯σ"/$.

The ray equations may be written on a long propagation distance scale of O(σ−#/$)
by defining a scaled time as

τ¯ ε#t¯σ#/$t. (3.13)

Substitution of (3.12), (3.13) into (2.7) gives

dxa
dτ

¯
1

ε#
Fk(ka )εGk(xa ,ka ), xa (0)¯x

!
,

dka

dτ
¯®εGx(xa ,ka ), ka (0)¯k

!
,

5

6

7

8

(3.14)
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where the α dependence has been suppressed, to write ordinary differential equations.
From (3.14) ka deviates at most O(ε) from k

!
, and will be expanded about

kW ¯ lim
ε $

!

k
!
. (3.15)

k
!
¯φx(x

!
(α)), and hence kW are parallel to the normal to x

!
([). Let c

g
be the group

velocity in the absence of random fluctuations, and eW
"

the corresponding direction:

c
g
¯ rFk(k

W )r" 0, eW
"
¯

Fk(k
W )

c
g

. (3.16)

Let eW
#
v eW

"
so that eW

"
, eW

#
are right handed. Let the initial strip for (2.5) be non-

characteristic :

cosψ3 eW T
"

kW

rkW r
1 0. (3.17)

Substitution into (3.12) yields

k
!
¯kW ®

ε$

c
g

G(x
!
,kW )

cosψ

kW

rkW r
O(ε'). (3.18)

Let x
"
, k

"
be defined by

xa ¯x
!
c

g

τ

ε#
eW
"
x

"
, ka ¯kW ε#k

"
. (3.19)

The scaling for ka is suggested by comparison of (3.14) with (3.6), i.e. ε−"G(xa ,ka ) is
expected to make an O(1) contribution to the limit ; x

"
, k

"
will be assumed O(1), and

determined self-consistently as ε $ 0. Substitution of (3.19) into (3.14) yields

dx
"

dτ
¯Fkk(k

W )k
"
εGk(xa ,kW )O(ε#), (3.20)

dk
"

dτ
¯®

1

ε
Gx(xa ,kW )®εGxk(xa ,kW )k

"
O(ε$). (3.21)

From the identity

d

dτ
G(xa ,kW )¯GT

x (xa ,kW ) 9cg eW
"

ε#
Fkk(k

W )k
"
εGk(xa ,kW )O(ε#): (3.22)

it is apparent that
k
"
¯ εη

"
eW
"
η

#
eW
#

(3.23)

with η
"
, η

#
of O(1), since substitution of (3.23) into (3.21) and use of (3.22) yields

d

dτ 9η"


1

c
g

G(xa ,kW ):¯ η
#

1

c
g

GT
x (xa ,kW )Fkk(k

W ) eW
#
®η

#
eW T
"

Gxk(xa ,kW ) eW
#
O(ε), (3.24)

dη
#

dτ
¯®

1

ε
eW T
#

Gx(xa ,kW )O(ε). (3.25)

Also, substitution of (3.23) into (3.20) yields

dx
"

dτ
¯ η

#
Fkk(k

W ) eW
#
εη

"
Fkk(k

W ) eW
"
εGk(xa ,kW )O(ε#). (3.26)
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Let ξ
#

be defined by

dξ
#

dτ
¯ η

#
, ξ

#
(0)¯ 0, (3.27)

so that x
"
¯ ξ

#
Fkk(k

W ) e
#
εx

#
, (3.28)

where
dx

#

dτ
¯ η

"
Fkk(k

W ) eW
"
Gk(xa ,kW )O(ε). (3.29)

The ray equations will next be expanded about

xh ¯x
!


c
g
τ

ε#
eW
"
ξ

#
Fkk(k

W ) eW
#
. (3.30)

From (3.19), (3.28), (3.30)
xa ¯xh εx

#
. (3.31)

Let

η
$
¯ η

"


1

c
g

G(xa ,kW )¯ η
"


1

c
g

G(xh ,kW )O(ε). (3.32)

Substitution of (3.31), (3.32) into (3.24), (3.25) yields

dη
$

dτ
¯ η

#

1

c
g

GT
x (xh ,kW )[Fkk(k

W )[eW
#
®η

#
eW T
"
[Gxk(xh ,kW )[eW

#
O(ε), (3.33)

dη
#

dτ
¯®

1

ε
eW T
#
[Gx(xh ,kW )®eW T2[Gxx(xh ,kW )[x

#
O(ε). (3.34)

From (3.29), (3.31), (3.32)

dx
#

dτ
¯ 9η$

®
1

c
g

G(xh ,kW ):Fkk(k
W ) eW

"
Gk(xh ,kW )O(ε). (3.35)

For initial conditions, first note, from (2.25), (3.12), that B(0)¯O(ε$). A limit will be
derived for A and B«¯B}ε#. Dropping primes, the initial conditions are, using also
(2.26), (3.18), that

η
"
(0)¯®

G(x
!
,kW )

c
g

O(ε$), η
#
(0)¯O(ε), η

$
(0)¯O(ε$),

x
#
(0)¯ 0, A(0)¯ cosψO(ε$), B(0)¯O(ε).

5

6

7

8

(3.36)

Since only A}A(0) is relevant, and the A,B equations are linear, we may take A(0)¯ 1
in (3.36).

From (2.27), (3.12), and the estimates e
j
¯ eW

j
O(ε#), j¯ 1, 2, the coefficients of the

A,B equations may be written as

µ
"
¯®ε$eW T

#
[Gxx(xa ,kW )[eW

#
O(ε&), µ

#
¯O(ε$), µ

$
¯ eW T

#
[Fkk(k

W )[eW
#
O(ε#). (3.37)

Further expansion about xh and substitution into (2.29), (2.30) now yields

dA

dτ
¯∆BO(ε), (3.38)

dB

dτ
¯®

1

ε
[eW T

#
[Gxx(xh ,kW )[eW

#
]A®[eW T

#
(Gxxx(xh ,kW )x

#
)[eW

#
]AO(ε), (3.39)
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where the matrix Gxxx x
#

has ijth component Σ#
l="

(¥#G}¥x
i
¥x

j
¥x

l
) (x

#
)
l
, and

∆¯ eW T
#
[Fkk(k

W )[eW
#
. (3.40)

To apply the limit theorem, consider the seven-dimensional vector W¯ (ξ
#
, η

#
, η

$
,

x
#
,A,B)T satisfying equations (3.27), (3.34), (3.33), (3.35), (3.38), (3.39), where the O(ε)

terms have been neglected. These equations are of the form (3.6), where H
i
, i¯ 1, 2 are

function of xh , and so are of the form

H
i
(t,W )¯H

i
(x

!
c

g
teW

"
ξ

#
Fkk(k

W ) eW
#
,W ), (3.41)

where t¯ τ}ε#. Now the mixing condition must be inferred from some corresponding
property of the random field G(x,kW )¯kW [Uq (x). We assume that if two sets S

"
,S

#
`2#

are separated by a large distance, then the sigma-algebra generated ²G(x,kW ) :x `S
"
´ is

approximately independent of that generated by ²G(x,kW ) :x `S
#
´. Roughly, this means

that Uq (x) cannot be predicted from its values in a region far from x.
From (3.41) it is apparent that for fixed non-random W� ,H

i
(t,W� ) is determined by

the values of G(x,kW ) and its first three x-derivatives along a line F
t
in the direction of

Fkk(k
W ) eW

#
, passing through the point x

!
c

g
teW

"
. Similarly, H

i
(tt«,W ) is determined by

the values of G and its first three derivatives along a parallel line F
t+t«

through the point
x
!
c

g
(tt«) eW

"
. First assume that ∆1 0, so that these lines are not parallel to eW

"
(∆¯ 0

will be treated below). Then F
t
, F

t+t«
are separated by the distance

r∆r

rFkk(k
W ) eW

#
r
(c

g
t«)U¢ as t«U¢. (3.42)

So (H
"
(t,W� ), H

#
(t,W� )) becomes asymptotically independent of (H

"
(tt«,W� ),

H
#
(tt«,W� )) as the time difference t« becomes large, since they depend on the values

of G(x,kW ) on sets separated by a large distance. (Technically, the sigma-algebra & t
t

is the smallest sigma-algebra with respect to which G(x,kW ), x ` F
t
and its first three

x- derivatives are measurable.)
Next suppose ∆¯ 0, so that F

t
is parallel to eW

"
. Let

τ«¯ τε#
rFkk(k

W ) eW
#
r

c
g

ξ
#
.

Then if all equations are written in terms of τ«, the function evaluations are at xh ¯
x
!
(c

g
τ«}ε

#
) eW

"
, so that mixing follows. Also, since d}dτ¯ (1O(ε#)) d}dτ«, the limit

is not affected by this change of variables.
Application of the limit theorem can be considerably simplified by noting that,

because of the role of H
#

in (3.8), all O(1) terms that are rapidly varying on the τ}ε#

scale, and are mean zero, do not contribute to the limit. Equivalently, setting these
terms equal to zero before computing the limit, we find that the subsystem W "¯
(ξ

#
, η

#
,A,B)T decouples from the subsystem W #¯ (η

$
,x

#
)T, which can be computed

trivially. From this calculation and (3.32)

η
"
¯®G(x

!
,kW )}c

g
, η

$
¯ 0, x

#
¯ 0. (3.43)

The other limits may now be calculated from (3.8), and will be written in the form
(3.10). Let β

"
,β

#
be two independent Brownian motions. Then in the limit

dξ
#
¯ η

#
dτ, ξ

#
(0)¯ 0; dη

#
¯ (aa ##)"/#dβ

"
, η

#
(0)¯ 0; (3.44)

dA¯∆Bdτ, A(0)¯ 1, dB¯ (aa %%)"/#Adβ
#
, B(0)¯ 0. (3.45)

The constants aa ##, aa %% are expressed in terms of the correlation function

ρ
G
(x«,k«)¯©G(x,k«)G(xx«,k«)ª. (3.46)
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Then

aa ##¯®
1

c
g

¥#

¥s#
#

&
¢

−¢

ρ
G
(s

"
eW
"
s

#
eW
#
) ds

")
s#=!

, (3.47)

aa %%¯
1

c
g

¥%

¥s%
#

&
¢

−¢

ρ
G
(s

"
eW
"
s

#
eW
#
) ds

")
s#=!

. (3.48)

Let the correlation matrix of Uq be

ρUq (x«)¯©Uq (x)Uq T(xx«)ª. (3.49)

Then for G given by (3.11)
ρ
G
(x«,kW )¯kW TρUq (x«)kW . (3.50)

4. Universal rogue distribution

From (3.17), (3.40) and (2.31) with Ω¯F, we obtain

∆¯³
g"/#

2kW $/# 0
3 cos#ψ®1

2 1 , (4.1)

where ψ is the angle between the rays and the waves in the absence of randomness, and
kW ¯ rkW r. From (3.45) dA¯ 0 if ∆¯ 0. So A¯ 1 and no caustics are possible (on this
O(σ−#/$) distance scale) if the rays make an angle of ψ*¯ arcos (1}o3)¯ 54.7° with
the waves. This situation would require such swift currents, without significant mean
curvature, that the theory is unlikely to find applications where this effect is observed.
However, it is interesting to note that the complement of ψ*, 35.3°, is familiar from the
theory of ship waves (Whitham 1974). A ship wake is confined to a wedge of semi-angle
arctan (1}(2o2))¯ 19.5°. A wave reaching the boundary of this wedge makes an angle
of 35.3° to the direction of the ship.

From (3.45) the joint probability density, P(τ,A,B), of A,B at time τ, is the solution
of the forward Kolmogorov (Fokker–Planck) equation

¥P
¥τ

¯ "

#
aa %%A#

¥#P
¥B#

®∆B
¥P
¥A

, P(0,A,B)¯ δ(A®1) δ(B). (4.2)

From (4.2) it is evident that for ∆1 0 and finite aa %%1 0, the variables B and τ can be
re-scaled to effectively set ∆ and aa %% arbitrarily. In particular, let

τa ¯ 0aa %%∆#

3 1"/$τ, B{ ¯ 03∆

aa %%1
"/$

B. (4.3)

Then when written in terms of τa , B{ , equation (4.2), and hence (3.45), are of the same
form but with ∆ replaced by 1, and aa %% replaced by 3.

Thus, for ∆1 0 and finite aa %%1 0 the (A,B) process is universal, except for scale
factors. In particular, all the statistics of A(τ) are determined by a single distance scale
factor, irrespective of the details of the random medium. Indeed, the universal statistics
of A(τ) do not even depend on the dispersion relation, except for general properties,
such as (3.12). This limit was first discovered for the non-dispersive case by Kulkarny
& White (1982), and was verified by the Monte Carlo simulations of Hesselink &
Sturtevant (1988). Extensions of these ideas to the non-dispersive case are in Zwillinger
& White (1985), Nair & White (1991), and White et al. (1988). A three-dimensional
theory for geometrical optics is in White (1984).
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F 1. Function u(τa ,R{ ), defined through equation (4.6). The curve u(τa , 0) (entering in
equation (4.7)) is marked by thick dashes.

For a caustic, we are interested in those values of τa at which A¯ 0. Let

R{ ¯B{ }A. (4.4)

A caustic occurs when R{ is infinite. By Ito’s lemma (McKean 1969) R{ satisfies the
Ito–Riccati equation

dR{ ¯®R{ #dτa o3dβ, (4.5)

where β(τa ) is a standard Brownian motion. From Kulkarny & White (1982) R{ has
explosions, i.e. it becomes infinite in finite time, with probability 1. In the language of
Feller (1952) R{ ¯¢ is an entrance boundary, and R{ ¯®¢ is an exit boundary.
That is, if R{ is large and positive, it will return to O(1) values, but if R{ is large and
negative it will soon explode to ®¢. So caustics occur when R{ U®¢, as might be
inferred from the minus sign of the quadratic term in (4.5).

Let s be the random distance at which R{ first becomes infinite, i.e. the first place
along the ray at which a rogue wave is formed. Let P

s
(τa ) be the probability density of

s. Then P
s
(τa ) can be obtained from the solution, u(τa ,R{ ), of the backward Kolmogorov

equation

¥u
¥τa

¯
3

2

¥#u
¥R{ #

®R{ #¥u
¥R{ ,

u(0,R{ )¯ 1,

uU 0 as R{ U®¢,

u bounded as R{ U¢.

5

6

7

8

(4.6)

Then (Kulkarny & White 1982; White et al. 1988)

P
s
(τa )¯®

¥
¥τa

u(τa , 0), (4.7)

see figure 1. Setting R{ ¯ 0 in (4.7) corresponds to the plane wave initial conditions
considered above. However, the probability density of the distance between two rogue
waves, formed along the same ray, can be obtained by evaluating u at R{ ¯¢ in (4.7).

A closed-form approximation for P
s

can be constructed from a composite of the
τa $ 0 and τa #¢ asymptotic expansions. From White et al. (1988)

P
s
(τa )E 00.7917

τa &/#
0.45281 exp (®0.6565

τa $
®0.4054τa * . (4.8)

This curve is very flat near τa ¯ 0, rises to a peak near τa ¯ 1, and then decays
exponentially to zero.
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Let
D¯ c

g
τa }σ#/$ (4.9)

be the distance, to leading order, traversed along a ray at time τa . Then from (4.1), (4.3)

τa ¯ 0σ#aa %%g

12kW $ 9
3 cos#ψ®1

2 :#1"/$ D

c
g

. (4.10)

As a specific model for a random current, let U be two-dimensionally incompressible,
so that Uq is determined by a random stream function Ψ(x). Let Ψ have mean zero and
correlation function

ρΨ(x«)¯©Ψ(x)Ψ(xx«)ª¯
L#

4
exp (®rx«r#

L#
* . (4.11)

Here L is an intrinsic distance scale, and the pre-exponential factor is chosen so that
©rUq r#ª¯ 1. For this model,

ρUq (x«)¯ exp (®rx«r#
L#

*
A

B

1

2
®

x!#

#

L#

x!

"
x!

#

L#

x!

"
x!

#

L#

1

2
®

x!#

"

L#

C

D

, (4.12)

and equation (4.10) becomes

τa ¯ (100π)"/'0σc
g

1#/$ 0c!gc
g

1#/$ 0cosψ 93 cos#ψ®1

2 :1#/$D

L
, (4.13)

where c!
g
¯ "

#
c!
p

is the group velocity in the absence of current.
When the mean current is zero, the third and fourth factors in (4.13) are unity. For

a non-trivial mean current, the situation may be more or less dangerous depending on
the average set and drift, with ψ¯ 54.7° the least dangerous situation, as discussed at
the beginning of this section. The most dangerous situation obtains when the swell is
in a direction opposite to the set of the mean current, both according to (4.13) and in
accord with common lore. For a fixed mean current strength this situation both
maximizes the terms involving cosψ and minimizes c

g
, and gives a larger value of τa than

if the mean drift were zero. Note that this result is non-trivial, since a constant current
with no random fluctuations will not by itself produce caustics in an opposing swell.

5. Numerical simulations

5.1. Description of the numerical ray tracing code

To illustrate the design of the ray tracing code, we will first refer to the same test case
as is shown in figure 16 of Gerber (1993). The annular current he considers is shown
in our figure 2. It has a parabolic velocity profile, with a peak velocity of 2 m s−". Waves
with a time period of T¯ 10 s enter from the south-west. To allow our code to work
with completely general flow fields (e.g. with currents determined from oceanographic
measurements), we represent the u- and �-velocity components on a discrete grid
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160 km

40 km

F 2. Ray tracing test problem: annular current ; parabolic velocity profile with
maximum velocity 2 m s−".
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F 3. Stream function for annular current (with horizontal scales in kilometres,
vertical in 1000 m# s−").

(rather than assuming a known functional form, as was the case in the code by Gerber).
Figure 3 shows the stream function for this annular current.

In order to solve (2.7) numerically, one needs values for u, �, u
x
, u

y
, �

x
, �

y
at arbitrary

spatial locations. Since we also solve the ray tube equations (2.29) and (2.30), we
additionally need values for all the second derivatives u

xx
, u

xy
, u

yy
, �

xx
, �

xy
, �

yy
. All these

derivatives can be obtained very rapidly from the grid values of u and � by successive
one-dimensional finite difference (FD) approximations as illustrated in figure 4. It is
immaterial whether the one-dimensional approximations are first made horizontally
on several grid lines, and then vertically at the desired x-location, as shown, or first
vertically, etc. – the results are identical.

A fast algorithm for determining weights in general one-dimensional FD formulas
was first given by Fornberg (1988). It is explained further, with codes, in Fornberg
(1996). This algorithm rapidly provides the optimal weights in FD formulas under the
following very general conditions:
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F 4. Structure of finite difference approximations used to find derivatives at
arbitrary locations.

(i) arbitrary location of the point at which the approximations are to be accurate
(may, but need not be, at a grid point),

(ii) arbitrary distribution of grid points (need not be equi-distributed, as here),
(iii) any level of accuracy (i.e. any stencil width), and
(iv) any order of derivative to be approximated (in its special case of the zeroth

derivative, using this algorithm to find the FD weights and then applying these
to the data constitutes the fastest known method for polynomial interpolation).

In the present calculations, all derivatives were obtained using a 5¬5 stencil, as
shown in figure 4. In the case of n¬n stencils, the total cost for one case (all 12
derivatives) becomes to leading order 10n# arithmetic operations for finding all needed
FD weights, and another 12n# operations to apply these weights to the grid values for
u and � (if we are only calculating ray paths – six derivatives – the corresponding
operation counts become 6n# and 8n# respectively).

A standard two-stage, second-order-accurate Runge–Kutta method was then used
to advance the six coupled ODEs (giving ray paths and, along these, the wave vector
and the ray tube area).

For the model problem just introduced, computations on a 41¬41 grid (i.e. with
grid spacing 10 km) give the ray paths shown in figure 5. To within the graphical
accuracy, these paths are indistinguishable from those presented by Gerber (1993). The
dots along the paths in figure 5 mark where the raytube area variable A first crosses
zero. As is to be expected, these locations agree with the locations where closely spaced
neighbouring rays first cross.

5.2. Generation of random eddy fields

We start the construction of our random eddy fields by first assigning, at the grid points
of an N¬N grid,

Ψ
i,j

¯²uniformly distributed random numbers between ®1 and 1´.

This field is brought to two-dimensional discrete Fourier space (using one-dimensional
FFTs), and each component Ψq

i,j
is damped by multiplying it with the factor E

i,j
:

Ψq
i,j

VΨq
i,j

E
i,j

where E
i,j

¯ e−(L/πS)
#
(i

#
+j

#
).
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F 5. Ray paths for annular current test problem (wave period T¯ 10 s). The dots mark
locations where raytube areas first cross zero, i.e. the first intersection points for infinitesimally
close rays.

Here, S denotes the physical side length of the square domain. After returning Ψq
i,j

to
the physical domain, the correlation length will be the specified L. Next we normalize
Ψ by the scaling

Ψ
i,j

VΨ
i,j

Lσo3N

(23E#
i,j

)"/#
.

The random stream function Ψ and the velocities u¯Ψ
y,

�¯®Ψ
x

(calculated by
pseudospectral differentiation – taking the analytical derivative in discrete Fourier
space) will now have standard deviation as follows:

©Ψ #
i,j

ª"/#¯σ
L

2
,

and ©u#
i,j

�#
i,j

ª"/#¯σ.

In the ray tracing calculations, a physical 640¬640 km domain was discretized with
256¬256 grid points. The rays were started with k

y
¯ 0, and with k

x
chosen to

correspond, through equation (2.1), to a wave with T¯ 10 s in the case of U¯0, i.e.
k
x

is obtained by solving the quadratic equation

gk
x
¯ 02π

T
®k

x
u1#.

Here g¯ 9.8 m s−#, T¯ 10 s, and u is the velocity component in the x-direction at the
ray starting point. Initial conditions for A and B were obtained numerically from
equations (2.16) and (2.25).

The domains in figures 6–8 are all of the size 320¬320 km; the bottom left of the
full periodic random 640¬640 km fields, thus avoiding any wrap-around correlations
within the ray-traced subdomains. Each of figures 6–8(a) shows streamlines in an eddy
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F 6. (a) Traces of 141 rays through a random field with L¯ 8 km, σ¯ 0.05 m s−". (b)
Histogram of the distance to the first focus along 141 rays in each of 1000 random fields, as in (a),
Comparison with ‘universal curve’ prediction (solid) and its approximation (dashed).
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F 7. (a, b) As figure 6 but with L¯ 20 km, σ¯ 0.2 m s−".
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F 8. (a, b) As figure 6 but with L¯ 60 km, σ¯ 1.0 m s−".
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F 9. Same stream function fields as were shown through contours in figures 6(b), 7(b) and 8(b)
respectively. Note that the horizontal axes are unchanged, but that the strengths of the eddies (vertical
scale) are increasing.

field with its associated rays and focus points. The histograms in figures 6–8(b) show
the x-coordinates of the first focus point along each ray, summed in each of the three
cases over 1000 random fields, i.e. in all, 141000 rays for each histogram. The solid
curve in each of these figures is the universal curve P

s
(τa ), given by (4.7), and scaled

according to (4.13), with c!
g
¯ c

g
, ψ¯ 0; the dashed curve is its approximation (4.8).

Since τa is a multiple of σ#/$D}L (cf. equation (4.13) and the comments following it),
the different σ-cases (eddy strengths) could all be studied in the same size domain by
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suitably adjusting L. Figure 9(a–c) illustrates again these scalings; the three surfaces
show the same three stream function fields as were previously seen in figures 6–8(a).
Note the differences in the vertical scale in the three cases.

6. Conclusions

We have demonstrated that a single universal curve, when appropriately scaled, will
accurately describe the distribution of focus points, that is, areas of particularly intense
wave action, which will arise when uniform waves enter a region of random current.
Although in the theoretical derivation of this curve it was assumed that the random
current fluctuations were small, and therefore that focusing would occur only after the
waves have travelled through many random eddies, the numerical calculations showed
excellent agreement with theory even when random effects were relatively large – with
focusing occurring before even a single eddy has been traversed. Since σ¯ 1 m s−", i.e.
a velocity standard deviation of about 2 knots, represents a substantial current, we
expect that these results will be generally applicable. If an estimate can be made of the
distance scale parameter, and of the distance propagated through the random current
field, reference to the universal curve provides a quantitative estimate of the danger of
a rogue wave.

Appendix

In this manuscript we are directly concerned only with the chance of a freak wave
at sea, and not with the chance factors influencing the height, steepness, asymmetric
shape or any other properties of the giant wave itself. That is, we are concerned with
the likelihood of encountering a freak wave, rather than an estimation of the expected
damage from encountering one. We also neglect nonlinear effects which may cause
instability or defocusing of the waves. Since a study of these related issues would make
a useful complement to the present work, we will briefly review them here.

As discussed in the Introduction, even for points in space that are not near caustics,
principles such as conservation of wave action (CWA), that would enable calculation
of amplitudes, lack a firm mathematical basis when the current has non-zero vorticity.
For water of finite depth, with wave modulations that are long compared to the depth,
CWA can be justified, even with rotational currents, by the work of Stiassnie &
Peregrine (1979). However, it might be argued that waves on a deep current do not
satisfy CWA, based on the form of the nonlinear Schro$ dinger equation (NLS) derived
for the amplitude by Mei (1989, equation (2.59) on p. 618) (NLS methods are discussed
further below). Still, the application of CWA to rotational currents remains
controversial.

Many authors have not been inhibited by its deficiencies from using ray theory to
compute amplitudes in the presence of rotational currents, e.g. the example of Gerber
(1993) which we considered in §5. Also, Peregrine (1976, §IIE) used CWA for waves
on a shear current for his investigation of freak waves and caustics. In particular, a
form of CWA is often used in computing wave spectra, regardless of vorticity. For
example, Mathiesen (1987) computed wave refraction by a current whirl, and Mapp,
Welch & Munday (1985) got good agreement of their ray theoretic energy densities
with those determined by Synthetic Aperture Radar (SAR) data, for observations of
waves refracted by warm core rings. Irvine & Tilley (1988) used CWA to interpret their
SAR data of the Agulhas current. Their analysis of meanders supports the basic
hypothesis of our manuscript : the theory that giant waves are caused by current-
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induced caustics. In their assessment, CWA ‘represents the presently accepted core of
belief ’.

Near a caustic, even CWA is not sufficient for the determination of amplitudes.
Other factors include: finite frequency diffraction effects that mitigate the caustic
singularity ; nonlinearities that can cause defocusing and instabilities ; blurring of the
caustic because real ocean waves are a mixture of frequencies rather than the pure
monochromatic waves used in the mathematical model ; wave energy generation by
wind forces ; and energy dissipation from breaking waves. An overview of some of
these factors is given in the review lecture of Peregrine (1985).

Linear theory predicts that the amplitude singularity near a caustic of simple ray
theory will be mitigated by finite frequency diffraction effects. The maximum
amplitude, and the size of the caustic boundary layer within which diffraction
corrections are needed, are both determined as powers of spatial frequency k, with the
exact powers dependent on the geometry of the caustic. Of course, in the present work,
the size of the caustic boundary layer, as well as the wavelength, is assumed to be much
smaller than the correlation length of the random medium. For non-dispersive waves
a uniform expansion for a smooth caustic was given by Ludwig (1966), and an
expansion near the cusp of a caustic was given by Pearcey (1946).

Alternatively, the Gaussian beam summation method can capture caustic corrections
for caustics of arbitrary geometric complexity (White et al. 1987). An adaptation of this
method, combined with stochastic methods that parallel those of the present paper, has
been used to compute wave statistics for wave propagation problems where caustics
occur at random locations (Nair & White 1991).

Another approach to calculating diffraction at a caustic is the parabolic equation
approximation for the amplitude, and a variant of this approach, the nonlinear
Schro$ dinger equation (NLS), can be adapted to include weak nonlinear effects. Smith
(1976) used this method in his analysis of giant waves, and estimated that for freak
waves in the Agulhas current, there would be ‘about a three-fold amplification of the
wave height near the caustic ’. He also noted that even a doubling of height would be
‘quite traumatic ’.

Peregrine (1986) gave two simple approximations for wave amplitude at the cusp of
a caustic, for water waves propagating over underwater shoals and spurs. One of his
approximations is based on the linear theory of Pearcey (1946), and the other, which
includes weak nonlinear effects, is based on the NLS. The NLS method for this
problem was compared with tank tests by Peregrine et al. (1988), and they obtained
good quantitative agreement. While they observed the predicted defocusing effects of
nonlinearity, they noted that linear diffraction is also important, and can be dominant
in practical cases.

A nonlinear mechanism quite different from that of caustic formation has been
proposed as an alternative explanation of freak waves. Dean (1990) suggested that the
nonlinear superposition of waves might produce waves larger than those suggested by
linear superposition. The resulting statistical distribution of wave heights would then
have large waves occurring more frequently than predicted by the Rayleigh
distribution. These large waves would then be, by definition, freaks.

Nonlinearities can also cause instability of a regular wave train. This was first
demonstrated theoretically by Benjamin & Feir (1967), who showed that for weakly
nonlinear surface gravity waves in deep water, regular wave trains were unstable to
perturbations, a result confirmed in the experimental work of Feir (1967) and others
(see Su et al. 1982 and references therein). Some of this experimental work showed that
the initial instability does not necessarily lead to disintegration of the wave train.
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Instead, as in Su et al. (1982), the waves can evolve first into a series of crescent-shaped,
spilling breakers, and then, finally, to a series of wave groups with a peak frequency
that is lower than the frequency of the initial wave train.

Gerber (1987) investigated a variation of the Benjamin–Feir instability, relevant to
wave packets propagating in deep water with non-uniform currents. He found an
enhancement of the instability for waves travelling against an adverse current, while
the current had a stabilizing effect for waves travelling with it. Most relevant for the
present work, he found enhanced instability of the wave packet in the neighbourhood
of a caustic caused by a shear current.

The Benjamin–Feir instability is one reason why a perfectly regular time-harmonic
wave train is an idealized model. In practice, even a relatively regular ocean swell
contains a mixture of frequencies. Since surface gravity waves are dispersive, each
frequency will give a caustic in a different location, as will, for instance, variations in
the initial direction of the waves. Even if all these variations are small, the sharply
defined caustic for monochromatic unidirectional waves will be blurred, and this may
have a significant effect on amplitudes. However, even though both nonlinearity and
a broad spectrum of frequencies are thought to have defocusing effects, the
combination of nonlinearity and broad spectrum has been proposed as the cause of
freak waves by Trulsen & Dysthe (1996). Consequently, these authors have derived a
form of the NLS equation applicable to a broad spectrum of frequencies, but have not
yet demonstrated that this equation will generate freak waves.

To return to the question of amplitude, we note that amplitude, or wave height, is
not necessarily the best measure of danger for a vessel at sea. Wave steepness is also
important, since even a small vessel can ride over large, but long seas provided they are
not too steep, a situation that often prevails in the Southern Ocean. Wave breaking is
another important feature. In their review of model tests, actual capsizes, and
mathematical, statistical and engineering analyses, Kirkman & McCurdy (1987)
concluded that ‘As a rule, we believe, no non-breaking wave is dangerous’ for offshore
yachts. Kjeldsen (1990) has derived a theory for calculating wave loads and slamming
caused by freak waves which are breaking, and presented some comparisons with
oceanographic measurements. Kjeldsen’s work is in response to what he perceived as
the cause of capsize for the 26 Norwegian ships lost in the period 1970–78, 13 of them
with no survivors.

Some of the factors that cause wave breaking were investigated in the numerical
computations of Dold & Peregrine (1986). These authors observed the growth of small
modulations on regular wave trains, as predicted by the Benjamin–Feir instability, and
determined the ranges of wave steepness and modulation length necessary for deep
water waves to break.

Details of the wave shape can also be important in assessing danger. For example
the deep trough, or ‘hole in the sea’, often reported preceding a freak wave, presents
a special hazard, as explained by Mallory (1974). When a fast ship meets a freak wave
head-on, she first steams downward into the trough, burying her bow. Now the
forward part of a ship usually has great buoyancy. So the bow forcefully attempts to
rise just as the giant wave breaks on deck aft of the ship’s forward buoyant area. The
resulting shear forces on the hull can cause significant structural damage, usually near
the bulkhead between Nos. 1 and 2 hatches.
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